Preview

Vestnik of North-Eastern Federal University. Medical Sciences

Advanced search

Sarcopenia: clinic, diagnosis, treatment, prevention (literature review)

https://doi.org/10.25587/2587-5590-2025-2-12-22

Abstract

The strategic goal of the healthcare and social assistance system in the Russian Federation is increasing of human life expectancy. In this aspect, the importance of timely diagnosis and correction of conditions that occur in older people, one of which is sarcopenia, increases. The article presents an analysis of the current scientific literature on sarcopenia, methods of its diagnosis, treatment and prevention.

Sarcopenia is characterized by a decrease of muscle tissue and strength as a result of the natural aging process of the body or in conditions of pathology. Primary sarcopenia is distinguished, which is mainly based on hormonal disorders (changes in the secretion of somatotropic hormone and cortisol), as well as a decrease in vitamin D levels. Primary sarcopenia has a more unfavorable prognosis and is more difficult to correct. Secondary sarcopenia occurs with physical inactivity, insufficient protein intake, as well as with oncopathology, intestinal diseases, cardiovascular and endocrine diseases. In this case, there is a comorbidity of pathology and a codependency of the pathogenetic mechanisms of the development of the atrophic process in the muscle tissue.

Sarcopenia is not a rare syndrome that occurs in the practical work of specialists of various profiles. However, due to the low awareness of doctors and alertness, it is extremely rare to distinguish it as a separate syndrome. The article provides evaluation scales for the diagnosis of sarcopenia, including in quantitative terms. Insufficient diagnosis of sarcopenia in practice leads to mismanagement and insufficient drug correction of such patients. And this, in turn, prognostically worsens the course of both the underlying disease and comorbid pathology.

The medical and social aspect of this condition is of particular importance. Due to the significant prevalence and association with adverse outcomes, patients with sarcopenia require dispensary supervision, timely palliative status, and medical support for a long time.

The information provided is of interest to doctors of various specialties, nursing staff, social workers, and relatives of patients. Information about sarcopenic syndrome is constantly updated with new data and research in the fields of immunology, pathophysiology, clinical medicine, pharmacology and nutrition.

About the Authors

Yu. N. Bykov
Irkutsk State Medical University
Russian Federation

Yury N. Bykov – Dr. Sci (Medicine), Professor, Head of Neurology Diseases, Irkutsk State Medical University.

Irkutsk

ResearcherID S-6938-2016, Scopus Author ID 57200671414



T. F. Nurulina
Irkutsk Regional Clinical Hospital
Russian Federation

Tatiana F. Nurulina – neurologist, Neurology Department, Irkutsk Regional Clinical Hospital.

Irkutsk



References

1. World report on aging and health. WHO, 2016. Available at: http://apps.who.int/iris/bitstream/10665/186463/10/9789244565049_rus.pdf. (In Russian)

2. Cruz-Jentoft AJ, Baeyens JP, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23. DOI: 10.1093/ageing/afq034

3. Shostak NA, Muradyantz AA, Kondrashov AA. Carcopenia and Overlapping Syndromes: Their Value in Clinical Practice. Clinician.2016;10(3):10–14 (in Russian). DOI: 10.17650/18188338-2016-10-3-10-14

4. Cruz-Jentoft AJ, Bahat G et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. DOI: 10.1093/ageing/afy169

5. Harimoto N, Shirabe K et al. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br. J. Surg. 2013;100(11):1523–1530. DOI: 10.1002/bjs.9258.

6. Lieffers JR, Bathe OF et al. Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br. J. Cancer. 2012;107(6):931–936. DOI: 10.1038/bjc.2012.350.

7. Reisinger KW, van Vugt JL et al. Functional compromise reflected by sarcopenia, frailty, and nutritional depletion predicts adverse postoperative outcome after colorectal cancer surgery. Ann. Surg. 2015;261(2):345–352. DOI: 10.1097/SLA.0000000000000628.

8. Schaap LA, van Schoor NM et al. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: the longitudinal aging study Amsterdam. J. Gerontol. A Biol. Sci. Med. Sci. 2018;73(9):1199–1204. DOI: 10.1093/gerona/glx245

9. Ibrahim K, May C et al. A feasibility study of implementing grip strength measurement into routine hospital practice (GRImP): study protocol. Pilot and Feasibility Studies, 2016;2:27 DOI: 10.1186/s40814-016-0067-x

10. Leong DP, Teo KK et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015;386(9990):266–273. DOI: 10.1016/S0140-6736(14)62000-6.

11. Peterson SJ, Braunschweig CA. Prevalence of Sarcopenia and Associated Outcomes in the Clinical Setting. Nutr Clin Pract. 2016;31(1):40–48. DOI:10.1177/0884533615622537

12. Kizilarslanoglu MC, Kuyumcu ME et al. Sarcopenia in critically ill patients. J Anesth. 2016;30(5):884–90. DOI: 10.1007/s00540-016-2211-4

13. Tae Nyun Kim1, Kyung Mook Choi. Sarcopenia: Definition, Epidemiology, and Pathophysiology. J Bone Metab. 2013;20(1):1–10. DOI:10.11005/jbm.2013.20.1.1.

14. Yakabe M, Ogawa S, Akishita M. Clinical manifestations and pathophysiology of sarcopenia. Biomedical Sciences. 2015;1(2):10–17. DOI: 10.11648/j.bs.20150102.11

15. Malafarina V, Úriz-Otano F et al. Sarcopenia in the elderly: Diagnosis, physiopathology and treatment. Maturitas. 2012;71(2):109–114. DOI:10.1016/j.maturitas.2011.11.012

16. Wang C, Bai L. Sarcopenia in the elderly: basic and clinical issues. Geriatr. Gerontol. Int. 2012;12 (3):388–396. DOI: 10.1111/j.1447-0594.2012.00851.x

17. Enns DL, Tiidus PM. Estrogen influences satellite cell activation and proliferation following downhill running in rats. J Appl. Physiol. 2008;104(2):347–353. DOI:10.1152/japplphysiol.00128.2007

18. La Colla A, Pronsato L et al. 17β-Estradiol and testosterone in sarcopenia: Role of satellite cells. Ageing Res Rev. 2015; 24 (Pt B): 166–177. DOI:10.1016/j.arr.2015.07.011

19. Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J. Cachexia Sarcopenia Muscle. 2018;9(1):3–19. DOI: 10.1002/jcsm.12238

20. Kim TN, Park MS et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010; 33 (7): 1497–1499. DOI: 10.2337/dc09-2310

21. Belaya Z.E. Sarcopenia: modern approaches to diagnosis and treatment. Effective Pharmacotherapy, 2014;(5):42–49 (in Russian). Available at: https://umedp.ru/articles/sarkopeniya_sovremennye_podkhody_k_diagnostike_i_lecheniyu.html?sphrase_id=175057

22. Barr R, Macdonald N et al. Association between vitamin D receptor gene polymorphisms, falls, balance and muscle power: results from two independent studies (ApOSS and OpUS). Osteoporos. Int. 2010;21(3):457–466. DOI: 10.1007/s00198-009-1019-6

23. Thomas DR. Sarcopenia. Clin Geriatr Med. 2010;26(2):331–346. DOI: 10.1016/j.cger.2010.02.012

24. Curtis E, Litwic A et al. Determinants of muscle and Bone Aging. J Cell Physiol. 2015;230(11):2618–2625. DOI: 10.1002/jcp.25001

25. Haran PH, Rivas DA, Fielding RA. Role and potential mechanisms of anabolic resistance in sarcopenia. J Cachexia Sarcopenia Muscle. 2012;3(3):157–162. DOI: 10.1007/s13539-012-0068-4

26. Okamura T, Miki A et al. Shortage of energy intake rather than protein intake is associated with sarcopenia in elderly patients with type 2 diabetes: a cross-sectional study of the KAMOGAWA-DM cohort. J Diabetes. 2019;11(6):477–483. DOI:10.1111/1753-0407.12874

27. Verlaan S, Aspray TJ et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and nonsarcopenic older adults: a case-control study. Clin Nutr. 2017;36(1):267–274. DOI: 10.1016/j.clnu.2015.11.013

28. Gianoudis J, Bailey CA, Daly RM. Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults. Osteoporosis Int. 2015;26(2):571–579. DOI: 10.1007/s00198-014-2895-y

29. Yang H, Hang J et al. Treadmill exercise promotes interleukin 15 expression in skeletal muscle and interleukin 15 receptor alpha expression in adipose tissue of high-fat diet rats. Endocrine. 2013;43(3):579–585. DOI: 10.1007/s12020-012-9809-6

30. Benny Klimek ME, Aydogdu T et al. Acute inhibition of myostatinfamily proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun. 2010;391(3):1548–1554. DOI: 10.1016/j.bbrc.2009.12.123

31. Matheny RWJ, Nindl BC, Adamo ML. Minireview: Mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology. 2010;151(3):865–875. DOI: 10.1210/en.2009-1217

32. Vassilakos G, Barton ER. Insulin-Like Growth Factor I Regulation and Its Actions in Skeletal Muscle. Comprehensive Physiology. 2019;9(1):413–438. DOI: 10.1002/cphy.c180010

33. Thoma A, Lightfoot AP. NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. Advances in Experimental Medicine and Biology. 2018;1088:267–279. DOI: 10.1007/978-981-13-1435-3_12

34. Alway SE, Mohamed JS, Myers MJ. Mitochondria initiate and regulate sarcopenia. Exercise and Sport Sciences Reviews. 2017;45(2):58–69. DOI: 10.1249/JES.0000000000000101.

35. Steiner JL, Lang CH. Alcohol impairs skeletal muscle protein synthesis and mTOR signaling in a timedependent manner following electrically stimulated muscle contraction. Journal of applied physiology. 2014;117(10):1170–1179. DOI: 10.1152/japplphysiol.00180.2014

36. Thapaliya S, Runkana A et al. Alcohol-induced autophagy contributes to loss in skeletal muscle mass. Autophagy. 2014;10(4):677–690. DOI: 10.4161/auto.27918.

37. Kawao N, Kaji H. Interactions between muscle tissues and bone metabolism. J Cell Biochem. 2015;116(5):687–695. DOI: 10.1002/jcb.25040.

38. Thomas DR. Sarcopenia. Clin Geriatr Med. 2010;26:331–346. DOI: 10.1016/j.cger.2010.02.012.

39. Buford TW, Anton SD et al. Models of accelerated sarcopenia: critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res Rev. 2010; 9 (4): 369–383. DOI: 10.1016/j.arr.2010.04.004

40. Choi KM. Sarcopenia and sarcopenic obesity. Korean J Intern Med. 2016;31(6):1054–1060. DOI: 10.3904/kjim.2016.193

41. Wannamethee SG, Atkins JL. Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity. Proc Nutr Soc. 2015;74(4):405–412. DOI: 1017/S002966511500169X

42. Huo YR, Suriyaarachchi P et al. Phenotype of osteosarcopenia in older individuals with a history of falling. J Am Med Dir Assoc. 2015;16(4):290–295. DOI: 10.1016/j.jamda.2014.10.018

43. Perna S, Spadaccini D et al. Osteosarcopenic Visceral Obesity and Osteosarcopenic Subcutaneous Obesity, Two New Phenotypes of Sarcopenia: Prevalence, Metabolic Profile, and Risk Factors. Journal of Aging Research. 2018;11:1–8. DOI: 10.1155/2018/6147426

44. Mokrysheva NG, Krupinova JA et al. A view at sarcopenia by endocrinologist. Obesity and metabolism. 2018;15(3):21-27 (in Russian). DOI: 10.14341/omet9792

45. Clinical recommendations «On chronic pain in elderly and senile patients». 2020; Ministry of Health of the Russian Federation (in Russian). Available at: https://cr.minzdrav.gov.ru/preview-cr/616_1

46. Sousa A, Guera RS et al. Sarcopenia among hospitalized patients – a cross-sectional study. Clin. Nutr. 2015;34(6):1239–44. DOI: 10.1016/j.clnu.2014.12.015.

47. Ethgen O, Beaudart C et al. The Future Prevalence of Sarcopenia in Europe: A Claim for Public Health Action. Calcif. Tissue Int. 2017;100(3):229–-234. DOI: 10.1007/s00223-016-0220-9.

48. Vaughan L, Corbin AL, Goveas JS. Depression and frailty in later life: a systematic review. Clin. Interv. Aging. 2015;10:1947–1958. DOI: 10.2147/CIA.S69632.

49. Soysal P, Veronese N et al. Relationship between depression and frailty in older adults: a systematic review and meta-analysis. Ageing Res. Rev. 2017;36:78–87. DOI: 10.1016/j.arr.2017.03.005.

50. Aprahamian I, Borges MK et al. The frail depressed patient: a narrative review on treatment challenges. Clin. Interv. Aging. 2022;17:979–990. DOI: 10.2147/CIA.S328432.

51. Wang X, Shen K. The Reciprocal relationship between frailty and depressive symptoms among older adults in rural China: a cross-lag analysis. healthcare (Basel). 2021;9(5):593. DOI: 10.3390/healthcare9050593.

52. Figueira Da Mata FA, Forte Gomez MM et al. Depression and frailty in older adults: a population-based cohort study. PLoS One. 2021;16(3):0247766. DOI: 10.1371/journal.pone.0247766.

53. Cao L, Zhou Y et al. Bidirectional longitudinal study of frailty and depressive symptoms among older Chinese adult. Front. Aging Neurosci. 2022;14:791971. DOI: 10.3389/fnagi.2022.791971.

54. Masenko VL, Kokov AN et al. Radiology methods of the sarcopenia diagnosis. Research and Practical Medicine Journal. 2019;6(4):127–137 (in Russian). DOI: 10.17709/2409-2231-2019-6-4-13.

55. Grigorieva II, Raskina TA et al. Sarcopenia: features of pathogenesis and diagnosis. Fundamental and Clinical Medicine. 2019;4(4):105–-116 (in Russian). DOI: 10.23946/2500-0764-2019-4-4-105-116.

56. Zakrevskiy AI, Fedorova AA et al. Sarcopenia: how to diagnose it? Clinical Nutrition and Metabolism. 2021;2(1):13–22 (in Russian). DOI: 10.17816/clinutr71107.

57. Pasechnik IN, Zakrevsky AI et al. Sarcopenia: the view of an anesthesiologist-resuscitator. Kremlin medicine. Clinical Bulletin, 2021(1):82–89 (in Russian). DOI: 10.26269/zqkk-j843.

58. Tosato M, Marzetti E et al. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clinical and Experimental Research. 2017;29(1):19–27. DOI: 10.1007/s40520-016-0717-0.

59. Wang ZM, Sun YG, Heymsfield SB. Urinary creatinine-skeletal muscle mass method: a prediction equation based on computerized axial tomography. Biomed Environ Sci.1996; 9(2-3):185–90.

60. TagliaficoAS, Bignotti B, et al. Sarcopenia: how to measure, when and why. Radiol Med. 2022;127(3):228–237. DOI: 10.1007/s11547-022-01450-3.

61. Albano D, Messina C et al. Imaging of sarcopenia: old evidence and new insights. European Radiology. 2020;30(4):2199-2208. DOI: 10.1007/s00330-019-06573-2.

62. Gaivoronsky IV, Nichiporuk GI, et al. Bioimpedancemetry as a method for assessing the component composition of the human body (literature review). Bulletin of St. Petersburg University. Medicine. 2017;12(4):365–384 (in Russian). DOI: 10.21638/11701/spbu11.2017.406.

63. Kołodziej M, Kozieł S, Ignasiak Z. The Use of the Bioelectrical Impedance Phase Angle to Assess the Risk of Sarcopenia in People Aged 50 and above in Poland. Int J Environ Res Public health. 2022;19(8):4687. DOI: 10.3390/ijerph19084687.

64. Takahashi N, Sugimoto M, et al. Validation study of a new semi-automated software program for CT body composition analysis. Abdominal Radiology. 2017;42(9):2369-75. DOI: 10.1007/s00261-017-1123-6

65. Van Vugt JLA, Levolger S, et al. A comparative study of software programs for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients. Journal of Cachexia, Sarcopenia and Muscle. 2017;8(2):285–297. DOI: 10.1002/jcsm.12158.

66. Kim JS, Kim WY, et al. Simple age specific cutoff value for sarcopenia evaluated by computed tomography. Annals of Nutrition and Metabolism. 2017;71(3-4):157–163. DOI: 10.1159/000480407.

67. Kim EH, Kim KW, et al. Reference Data and T-Scores of Lumbar Skeletal Muscle Area and Its Skeletal Muscle Indices Measured by CT Scan in a Healthy Korean Population. The Journals of Gerontology. Series A, Biological sciences and medical sciences. 2021;76(2):265–271. DOI: 10.1093/gerona/glaa065

68. Yousaf T, Dervenoulas G, Politis M.Advances in MRI Methodology. International Review of Neurobiology. 2018;(141):31–76. DOI: 10.1016/bs.irn.2018.08.008

69. Caraiani C, Petresc B et al. Contraindications and adverse effects in abdominal imaging. Medical Ultrasonography. 2019;21(4):456–463. DOI 10.11152/mu-2145

70. Senesac CR, Lott DJ et al. Lower Extremity Functional Outcome Measures in Duchenne Muscular Dystrophy – A Delphi Survey. Journal of Neuromuscular Diseases. 2019;6(1):75–83. DOI: 10.3233/JND-180337.

71. Alic L, Griffin JF 4th et al. Using MRI to quantify skeletal muscle pathology in Duchenne muscular dystrophy: A systematic mapping review. Muscle and Nerve. 2021;64(1):8–22. DOI: 10.1002/mus.27133.

72. Brogna C, Cristiano L et al. Longitudinal Motor Functional Outcomes and Magnetic Resonance Imaging Patterns of Muscle Involvement in Upper Limbs in Duchenne Muscular Dystrophy. Medicina (Kaunas). 2021;57(11):1267. DOI: 10.3390/medicina57111267

73. Schlaeger S, Inhuber S, et al. Association of paraspinal muscle water-fat MRI-based measurements with isometric strength measurements. European Radiology. 2019;29(2):599-608. DOI: 10.1007/s00330-018-5631-8

74. Кучер А.Н. Молекулярно-генетические маркеры саркопении. Молекулярная медицина. 2021;19(1):17–29. [Kucher A.N. Molecular and genetic markers of sarcopenia]. Molekulyarnaya meditsina. 2021;19(1):17–29 (in Russian). DOI: 10.29296/24999490-2021-01-03.

75. Global recommendations on physical activity for health. World Health Organization. Geneva. 2010. Available at: https://whodc.mednet.ru/en/main-publications/ukreplenie-zdorovya/2066.html

76. Cermak NM, Res PT, et al. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. Am J Clin Nutr. 2012;96(6):1454-64. DOI: 10.3945/ajcn.112.037556.

77. Hirschfeld HP, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int. 2017;28(10):2781-90. DOI: 10.1007/s00198-017-4151-8

78. Tkacheva ON, Kotovskaya YV, et al. Clinical guidelines frailty. Russian Journal of Geriatric Medicine. 2020;1:11–46 (in Russian). DOI: 10.37586/2686-8636-1-2020-11-46.

79. Iolascon G, Moretti A, et al. Pharmacological therapy of sarcopenia: past, present and future. Clin Cases Miner Bone Metab. 2018;15(3):407–415.

80. Sakumo K, Yamaguchi A. Sarcopenia and age-related endocrine function. Int J Endocrinol. 2012; 2012: 127362. DOI: 10.1155/2012/127362.

81. Brotto M, Abreu EL. Sarcopenia: pharmacology of today and tomorrow. J Pharmacol Exp Ther. 2012;343(3):540–546. DOI: 10.1124/jpet.112.191759

82. Boldyreva YV, Lebedev IA, Hajiumarova EA. Clinical Profile of a patient with vitamin D deficiency in the blood. Farmatsiya. 2022;71(7):49–56 (in Russian). Available at: https://doi.org/10/29296/25419218-2022-07-07.

83. Safonova JA, Zotkin EG, et al. An analysis of vitamin D sufficiency in elderly people. Adv. geront. 2018;31(2):184–190 (in Russian).


Review

For citations:


Bykov Yu.N., Nurulina T.F. Sarcopenia: clinic, diagnosis, treatment, prevention (literature review). Vestnik of North-Eastern Federal University. Medical Sciences. 2025;(2):12-22. (In Russ.) https://doi.org/10.25587/2587-5590-2025-2-12-22

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5590 (Online)