Preview

Vestnik of North-Eastern Federal University. Medical Sciences

Advanced search

THE INTESTINAL MICROBIOME OF VILYUI ENCEPHALOMYELITIS PATIENTS AND ITS ROLE IN THE PATHOGENESIS OF THE DISEASE

https://doi.org/10.25587/SVFU.2021.24.3.002

Abstract

Vilyui encephalomyelitis (VE) is a unique endemic disease of the central nervous system, in which neurodegenerative processes are initiated by chronic aseptic subclinical inflammation of the brain. Recent research suggests that the gut microbiome play an important role in immune activation and inflammation in a variety of neurological conditions, including multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease. The article discusses the results of a pilot study of the intestinal microbiome of healthy representatives of the Sakha ethnic group (Yakuts) and VE patients, carried out in collaboration with the Institute of Gene Biology of the Russian Academy of Sciences and the Atlas-Biomed Group - Knomics LLC. In the stool samples of VE patients, the level of generas Prevotella, Faecalibacterium, unclassified members of family Ruminococcaeae, as well as other Clostridiaceae was reduced. A significant increase in the proportion of bacteria Akkermansia, archaea Methanobrevibacter, and, on the verge of significance, of the families Christensenellaceae and Mogibacteriaceae was revealed. An analysis of the associations of the gut microbiome and the disease using the selbal algorithm showed a tendency for the association of VE with Methanobrevibacter, which is represented by M. smithii and with the normalized log-ratio between Methanobrevibacter and one or more unclassified genera from the Coriobacteriaceae family. The revealed features of the taxonomic composition of intestinal microbiome in VE patients contribute to the development of a chronic subclinical inflammatory process, as well as pathological lipogenesis.

About the Authors

T. M. Sivtseva
Research Center, Institute of Medicine, M. K. Ammosov North-Eastern Federal University
Russian Federation


G. G. Karganova
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
Russian Federation


V. L. Osakovsky
Research Center, Institute of Medicine, M. K. Ammosov North-Eastern Federal University
Russian Federation


References

1. Петров П. А. Вилюйский энцефалит (энцефаломиелит) / П.А. Петров // Невропатология и психиатрия. 1958. - № 6. - С. 669-674.

2. Шаповал А.Н. Вилюйский энцефалит / А.Н. Шаповал. - Якутск, 1959. - 154 с.

3. Goldfarb L.G., Gaidusek D.C. Viluisk encephalomyelitis in the Yakut people of Siberia / L.G. Goldfarb, D.C. Gaidusek // Brain. 1992. - v. 115. - Р. 961-978.

4. Intrathecal synthesis of oligoclonal IgG in patients with Viluisk encephalomyelitis: the relation between oligoclonal bands and clinical features / T.M. Sivtseva, V.A. Vladimirtsev, R.S. Nikitina, et.al. // J. Neurol. Sci. - 2018. - v. 384. - P. 84-88.

5. Viluisk encephalomyelitis - review of the spectrum of pathological changes / C.A. Mclean, C.L. Masters, et al. // Neuropathol. Appl. Neurobiology. - 1997. - v. 23. - P. 212-217.

6. Авцын Ф.П. Новые данные к эпидемиологии и морфологии вилюйского энцефаломиелита / Ф.П. Авцын, А.А. Жаворонков, В.П. Алексеев // Архив патологии. - 1994. - № 4 (56). - C. 39-44.

7. Осаковский В.Л. Иммунопатология вилюйского энцефалита / В.Л. Осаковский, Т.М. Сивцева // Нейроиммунология. - 2012. - № 3-4 (10). - С. 22-27.

8. Гольдфарб Л.Г. Вилюйский энцефаломиелит / Гольдфарб Л.Г., Владимирцев В.А., Ренвик Н.М., Платонов Ф.А. - Новосибирск: Издательство СО РАН, 2014. - 256 с.

9. Cheng M. Stereotypes about enterotype: old and new ideas genomics, proteomics, bioinformatics / M. Cheng, K. Ning // Genomics proteomics bioinformatics. - 2019. - 17. - Р. 4-12.

10. Diversity and coteratype in gut bacterial community of adults in Taiwan / C. Liang, HC Tseng, HM Chen // BMC genomics. - 2017. - v. 18 (supl.1). - Р. 932.

11. Gerhardt S. Changes of colonic bacterial composition in Parkinson’s diseases and other neurodegenerative diseases / S. Gerhardt, MN. Mohajeri // Nutrients. - 2018. - v. 10 (6). - Р. 708.

12. Impact of microbiota on central nervous system and neurological disease: the gut - brain axis. / Q. Ma, C. Xing, W. Long, et.al. // J. neuroinflammation. - 2019. - v. 16. - Р. 53.

13. Analysis of Gut Microbiota in Patients with Parkinson’s Disease / V.A. Petrov, I.V. Saltykova, I.A. Zhukova, et al. // Bull Exp Biol Med. - 2017. - v. 162 (6). - P. 734-737.

14. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome / E.M. Hill-Burns, JW Debelius, JT Morton, et.al. // Mov Disord. - 2017. - 32(5). - P. 739-749.

15. Alterations of the human gut microbiome in multiple sclerosis / S. Jangi, R. Gandhi, LM Cox, et al. // Nat Commun. - 2016. - v. 28; 7. - P. 12015.

16. Gut microbiome signature of Viluisk encephalomyelitis in Yakuts includes an increase in microbes linked to lean body mass and eating behavior. / V. Kuznetsova, A. Tyakht, L. Akhmadishina, et al. // Orphanet journal of rare diseases. - 2020. - v. 15. - Р. 327.

17. Dahl W.J. Diet, nutrients and the microbiome / W.J. Dahl, D. Rivero Mendoza, J.M. Lambert // Prog Mol Biol Transl Sci. - 2020. - v. 171. -P. 237-263.

18. Akin H. Diet, microbiota, and colorectal cancer. / H. Akin, N. Tözün // J Clin Gastroenterol. - 2014. - 48 Suppl 1. - P. 67-69.

19. Gastric microbiota and carcinogenesis: the role of non-Helicobacter pylori bacteria - A systematic review / E. Dias-Jácome, D. Libânio, M. Borges-Canha, et.al. // Rev Esp Enferm Dig. - 2016. - v. 108(9). - P. 530-540.

20. Mobeen F. Enterotype Variations of the Healthy Human Gut Microbiome in Different Geographical Regions. / F. Mobeen, V. Sharma, P. Tulika // Bioinformation. - 2018. - v. 29; 14(9). - P. 560-573.

21. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics / M. Lopez-Siles, S.H. Duncan, L.J. Garcia-Gil, M. Martinez-Medina // ISME J. - 2017. - v. 11(4). - P. 841-852.

22. Role of gut microbiota in type 2 diabetes pathophysiology / M. Gurung, Z. Li, H. You, et.al. // EBioMedicine. - 2020. - 51. - 102590.

23. The gut microbiota in anxiety and depression - A systematic review. / C.A. Simpson, C. Diaz-Arteche, D. Eliby, et.al // Clin Psychol Rev. - 2021.

24. Ruminococcus gnavus, a member of the human gut microbiome associated with Crohn’s disease, produces an inflammatory polysaccharide. / M.T. Henke, D.J. Kenny, C.D. Cassilly, et.al. // Proc Natl Acad Sci U S A. - 2019. - v. 116(26) - P. 12672-12677.

25. Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. / Y.Y. Chen, D.Q. Chen, L. Chen, et al. // J Transl Med. - 2019. - v. 17. - P. 5.

26. Akkermansia muciniphila a human intestinal mucin-degrading bacterium./ M. Derren, EE Vaughan, CM Plugge, WM. de Vos // Int. Journal of systematic and evolutionary microbiology. - 2004. - v. 54. - P. 1469-1476.

27. Biosynthesis of Human Colonic Mucin: Muc2 Is the Prominent Secretory Mucin. / K.M. Tytgat, HA Büller, FJ Opdam, // Gastroenterology. - 1994. - v. 107. - P. 1352-1363

28. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults / T.L. Weir, D.K. Manter, A.M. Sheflin, et.al. // PLoS One. - 2013. - v. 8. - e70803.

29. Akkermansia muciniphila is a promising probiotic / T. Zhang, Q. Li, L. Cheng, et.al. // Microb Biotechnol. - 2019. - v. 12(6). - P. 1109-1125.

30. Syntrophy via interspecies H2 transfer between Christensenella and Methanobrevibacter underlies their global cooccurrence in the Human Gut / A. Ruaud, S. Esquivel-Elizondo, J. de la Cuesta-Zuluaga, et al. // mBio. - 2020. - v. 11(1). - e03235-19.

31. An obesity-associated gut microbiome with increased capacity for energy harvest /P.J. Turnbaugh, RE Ley, MA Mahowald, et.al. // Nature - 2006. - v. 444. - P. 1027-1031.

32. Gut colonization with Methanobrevibacter smithii is associated with childhood weight development / C.A. Mbakwa, J. Penders, P.H. Savelkoul, et.al. // Obesity (Silver Spring) - 2015. - v. 23. - P. 2508-2516.

33. The Association Between the Gut Microbiota and Parkinson’s Disease, a Meta-Analysis / T. Shen, Y. Yue, T. He, et.al. // Front Aging Neurosci. - 2021. - v. 13. - P. 636545.

34. Comparison of the Intestinal Microbiome of Italian Patients with Multiple Sclerosis and Their Household Relatives / P. Galluzzo, F.C. Capri, L. Vecchioni, et.al. // Life (Basel). - 2021. - v. 11(7). - P. 620.

35. Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type / K. Oki, M. Toyama, T. Banno, et.al. // BMC Microbiol. - 2016. - v. 16(1). - P. 284.

36. Differences in Gut Microbiota in Patients With vs Without Inflammatory Bowel Diseases: A Systematic Review / R. Pittayanon, J.T. Lau, G.I. Leontiadis, et.al. // Gastroenterology. - 2020. - v. 158(4). - P. 930-946.

37. Volkova A. Predictive Metagenomic Analysis of Autoimmune Disease Identifies Robust Autoimmunity and Disease Specific Microbial Signatures / AVolkova, K.V. Ruggles // Front Microbiol. - 2021. - v. 12. - 621310.

38. Fecal microbiota signatures of insulin resistance, inflammation, and metabolic syndrome in youth with obesity: a pilot study. / F. Del Chierico, M. Manco, S. Gardini, et.al. // Acta Diabetol. - 2021. - 58(8):1009-1022.

39. Genetic determinants of the gut microbiome in UK twins /J.K. Goldrich, E.R. Davenport, M. Beaumont, et al. // Cell host microbe. - 2016. - v. 19. - P. 731-743.

40. Heritable components of the human fecal microbiome are associated with visceral fat. / M. Beaumont, JK Goodrich, MA Jackson, et al. // Genome Biol. - 2016. - v. 17(1). - P. 189.

41. The short chain fatty acid receptor GPR43 regulates inflammatory signals in adipose tissue M2-type macrophages /A. Nakajima, A. Nakatani, S. Hasegawa // PLoS One. - 2017. - v. 12(7). - e0179696.

42. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis / P.M. Smith, M.R. Howitt, N. Panikov, et.al. // Science. - 2013. - Vol. 341, Issue 6145. - P. 569-573


Review

For citations:


Sivtseva T.M., Karganova G.G., Osakovsky V.L. THE INTESTINAL MICROBIOME OF VILYUI ENCEPHALOMYELITIS PATIENTS AND ITS ROLE IN THE PATHOGENESIS OF THE DISEASE. Vestnik of North-Eastern Federal University. Medical Sciences. 2021;(3):9-18. (In Russ.) https://doi.org/10.25587/SVFU.2021.24.3.002

Views: 107


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2587-5590 (Online)